
Abstract
This document is a first attempt to define the basic func-

tionnalities of the TTS in the CMS DAQ. Its role is to adapt
the trigger pace to the DAQ capacity in order to avoid conges-
tions and overflows at any stage of the readout chain. The dif-
ferent possibilities for the TTS to measure the load on parts of
the chain are examined. It clearly appears that one part of the
chain needs fast reaction time (few tens of microseconds)
whereas the rest of the chain can afford longer reaction time,
available to nowadays processors.

I. INTRODUCTION

The trigger throttling system (TTS) is a critical element of
the CMS data acquisition system. Its role is to ensure that trig-
ger logic is not overloading any of the electronic devices in
charge of moving, processing, and storing the data from the
very front-end electronic down to the storage media.

By design, the DAQ is able to process events at 100 KHz
(maximum average). However, due to the random nature of the
trigger, the LV1-A signal can exceed these 100 KHz for some
time. Although the DAQ is able to handle higher instantaneous
LV1-A frequencies, data loss and DAQ failure may occur if
the LV1-A frequency is not monitored and regulated according
to the DAQ load.

As inputs, the TTS receives warnings/status from all the
devices that can suffer from overload and as output, the TTS
produces a throttling signal that will reduce the trigger rate
according to strategies to be defined later. These strategies are
out of the scope of the present document.

II. FRONT END RESOURCES

According to the front-end electronic logical model[1], the
front-end derandomizers (see Fig. 1.) are the first devices to
overflow when too fast LV1-A are issued. Space and power
constraints in the front-end lead to small derandomizer depth
and hence, these queues are very sensitive to bursty LV1-A
even if the 100 kHz average is met. In general, these deran-
domizers behave like a first-in-first-out queue: the input fre-
quency is directly the LV1-A and the output frequency
(detector dependent) ranges from 3us to 7us (see table in the
appendix).

Fig. 1. Front-End logical structure

Simulations (see Fig. 2.) have been made showing the rela-
tion linking the depth, the service time and the probability to
overflow. The best way to avoid overflow is to design for
robustness: that means implement a big memory depth along
with a short service time compared to the average time interval
between two triggers (10us). When this is not possible since
severe constraints on power consumption for example, other
alternatives exist to minimize the overflow probability and to
limit the consequences of it when it happens.

Fig. 2. Graphs showing the overflow probability versus the
service time and the queue depth

A. Overflow consequences
Practically, an overflow means that a data related to a given

trigger is overwritten in the readout channel or depending on
the implementation, a data corresponding to a trigger cannot
be introduced in the readout channel. At the level of the deran-
domizer, as the data is usually not time-stamped, the data of
the next event will be readout as being the data of the current
event: the data belonging to two different beam crossings are
mixed and this is a real disaster! But the worst is not yet
there... After an overflow, that channel (or group of channel) is
misaligned with respect to the other channels of the detector
and will continue to provide data belonging to a different trig-
ger: the misaligned channel must be re synchronized to be in

Trig

Bunch Cnt

TTC system

Event Cnt

RF CLK

EC Reset

BC Reset

LV1A

Test Signals
Initialization

Fast Controls
Parameters

Front End Unit
Preamp

(shaper, ADC, …)

Delay

Derandomizer

Mux

Formatting* may be part of the FE

FE Back Pressure

4 6 8 10 12 14 16 18
10

−9

10
−8

10
−7

10
−6

10
−5

10
−4

10
−3

10
−2

10
−1

10
0

d: Fifo size (in events)

P
(n

=
d

)

s=2us s=3us s=4us

s=5us
s=6us

s=7us

s=8us

s=9us

s=10us

1 2 3 4 5 6 7 8 9 10
10

−9

10
−8

10
−7

10
−6

10
−5

10
−4

10
−3

10
−2

10
−1

10
0

s: service time in us

P
{n

=
d

)

d=4

d=6

d=8 d=10 d=12

d=14

d=16

d=18

Trigger Throttling System for CMS DAQ

A. Racz

CERN, Div. EP, Meyrin CH-1211 Geneva 23 Switzerland

step with the others. A resynchronization on-the-fly of a given
channel (or a group of channels) would be the most efficient
regarding the system availability. Technically-wise, there are
three ways to perform this operation:

• the Timing Trigger and Control system (TTC)[2] must
provide the right bunch and event number to the mis-
aligned channel to be used at restart time. Due to the ran-
dom nature of the trigger, the TTC cannot know what
event number will be associated to which bunch number.
So the only possibility is to send only the current event
number reached at the end of the orbit gap of the LHC
beam. During the duration of the gap (127BX or 3.175
us), there will be no event and at the first bunch of the new
orbit, the bunch counter restarts at zero by definition

• the second way uses the special commands of the TTC.
When the misalignment is detected and quantified, one
could use 4 special commands to increment/decrement
on-the-fly the event or bunch counter of a given channel.
The misalignment monitoring process would detect some-
time after the return-to-sync of the channel

• finally, the third way is to use a general reset broadcasted
by the TTC that will flush all the data in all the front-ends
(pipeline, derandomizers,....), initialize the bunch and
event counter to zero and hold the system until the begin-
ning of the next LHC orbit

The first alternative affects only a given channel but that
channel can be unavailable up to an entire LHC orbit (~88us).
The second alternative offers the smallest impact on the rest of
the DAQ and on the un-availability time. The third one is the
brute force, affects the whole DAQ, can result in an un-avail-
ability time of one orbit but the simplest to implement! The
two first set severe requirements on the front-end functionnali-
ties at the current design stage.

If none of these solutions are possible, the current run must
be stopped in order to perform the resynchronisation. Then a
new run can be started. If the overflows are frequent, this will
reduce by a big factor the availability of the DAQ and conse-
quently, the physics performances of CMS.

B. Overflow detection
There is no way to detect an overflow in the front-end

without implementing dedicated hardware that chases this spe-
cific condition. Should the overflow happen (whatever we do,
it will!), the status word for that event must include this infor-
mation and the front-end electronic must be able to recover
from that situation without a general reset. In other words, an
overflowed detector must not loose the synchronicity of its
event/bunch counter with respect to the other detectors.

C. Overflow prevention
In the front-end area, the storage resources are generally

small. Therefore, the reaction time of a feed back loop must be
short, i.e. within a few trigger intervals. Let us look at a simple
reaction loop model (see Fig. 3 .)to better visualize the issues.

Fig. 3. Overflow model

Realistic durations can be given to the parameters:

• Sensor transmit time (T1) = 30us

• TTS processing time (T2) = 4us

• TTS transmit time (T3) = 1us

• Trigger setup time (T4) = 5us

The total response time is 40us or 4 events in average
(assuming an input rate of 100 kHz), the high limit sensor must
set at N-4, (N is the buffer capacity). During these 40us, 4
events will be readout (assuming an output rate of 100 kHz)
and 4 events will enter the buffer. But these are only average
values. The buffer would overflow if 9 triggers or more are
generated. According to the Poisson distribution, the probabil-
ity to have 9 or more triggers when an average of 4 is expected
is still 2.1%. If by design, the output service time is shorter
(i.e. 7us, ~6 events can be removed from the buffer), the situa-
tion is more comfortable: 11 triggers during 40us are needed to
overflow the same buffer. The Poisson probability of this situ-
ation is 0.3%. The main problem with this solution is to use a
significant part of the buffer as safety margin and of course the
need of a complex alarm transmission network.

A second alternative to reduce the overflow probability is
to reduce the reaction time. If hardware emulators (state
machines) are used to know the buffer status at any time, the
overflowing trigger can be inhibited and hence the overflow
avoided. Applied to the previous model, T1 is now 0us: the
total response time is 10us. If the threshold is set to N-1, 3 trig-
gers are needed to overflow the buffer. The Poisson probability
of having 3 events or more when 1 is expected is close to 8%!
That means that the threshold must be set lower: for N-2, the
overflow probability is 1.9% and for N-3, 0.4%. With this
alternative, a complex network is avoided but emulation hard-
ware has to be developed. Regarding the buffer usage, the situ-
ation is still not satisfactory.

A last alternative is to setup rules on the trigger: the idea is
to identify the overflowing trigger sequence for each front end
systems and implement in the trigger logic a sequence monitor
that will regulate the burstiness of the trigger and hence inhibit
the killing trigger of a sequence that overflows one front end

Monitored
Buffer

Trigger

TTS

High limit
sensor

T1

T2

T3

T4

Command
Network

Free space
before overflow

ratei
i I

Free
T ≤∑

=

4

1

Input

Output

system. For example, these rules can be: at least 2 bunch cross-
ings between 2 consecutive triggers, no more than 8 triggers
per LHC orbit, etc.... These rules are of course highly depen-
dent on sub-systems and require a deep knowledge of them.
The drawback of this option is that the global trigger effi-
ciency may be reduced by an inacceptable factor. Studies and
simulation should allow the estimation of this inefficiency.

When numbers smaller than a percent are written, usually,
one could think that the occurrence of that event is rare and
marginal. In the case of the front-end, with an average time
between triggers of 10us, 1% overflow probability means one
overflow every millisecond of beam (!!!) and that is dramatic:
if, by design, the only solution to recover from a misalignment
is a reset of the front end chips, events located in the delay line
and derandomizers are lost. Let’s take a typical derandomizer
depth of 8 events: 8 events are lost every millisecond (assum-
ing no event in the delay line). For an average of 100 possible
events during 1 ms, 8 of them are lost... In other words, this
1% overflow probability creates 8% inefficiency for the DAQ!
Other queue depth and service times are represented in the
graphs below (see Fig. 4 .).

This simple calculation does not consider neither the time
to detect the overflow, time during which the data are cor-
rupted and hence useless nor the fact that if the front-ends of a
sub-detector are independent from each other, the overflow
probability of that sub-detector is the overflow probability for
a single front-end multiplied by the number of front-ends in
that sub-detector.

Whatever the overflow reduction techniques will be, it is

vital to maintain its probability in the 10-3 region or well
below (if independent front-ends) and to implement efficient
recovery procedures

Fig. 4. Graphs showing the mean time between overflow and the
DAQ efficiency loss for different derandomizer depth and for

different service time when the recovery procedure is a general
reset

During 1999, a TRIDAS workshop1 addressed extensively
this critical front-end issue: the table of the appendix summa-
rizes the situation of every front-end regarding the buffer over-

flow. More information is available in the proceedings2.
Without making any assumptions on the final choice, it is very

likely that a combination of the last two alternatives will be
used.
For obvious technical reasons, the physical location of the
state machines and the trigger rule sequencer is within the glo-
bal trigger logic.

III. READOUT UNIT RESOURCES

The storage devices of the Readout Unit (RU) are the next
elements of the acquisition chain subject to overflow. These
storage elements are the Detector Dependent Unit or Data
Concentrator Card (DDU/DCC) and the Readout Unit Mem-
ory (RUM) (see Fig. 5 .).

Fig. 5. Readout Unit block diagram

The physical location of the DDU is in the underground
counting rooms whereas the RUM is located in the surface
building: 100m (200m cable path) are in-between. The DCC
provides more or less 2 KB of data per trigger: this makes 200
MB/sec. average data rate, assuming 100 kHz average trigger
rate. Currently, as far as the protocol is known, the event data
are removed from the DCC by a transparent data link at 400
MB/sec.: this significantly higher throughput is needed to
absorb the fluctuations in the event size and also avoids the
overflows in the final DCC storage buffer when nominal
working conditions are met. If the data transfer is interrupted
due to some failure (hardware or software), a classical ava-
lanche of “full flags” will be issued.

Regarding the RUM, the situation is quite different from
the front-end: almost no constraint on the memory size, I/O
processors able to run complex monitoring/recovery tasks,
standard fast network access (i.e. Gigabit Ethernet). By design,
the memory is able to handle up to 100000 events (1 second of
data taking). Given this capacity, the reaction time can be in

1.Front End and Readout Unit Workshop June 15-16, 1999 at CERN

6.0 8.0 10.0 12.0 14.0 16.0
Fifo size (events)

10
-4

10
-3

10
-2

10
-1

10
0

10
1

10
2

10
3

10
4

M
e
a
n
 t
im

e
 b

e
tw

e
e
n
 o

ve
rf

lo
w

 (
se

co
n
d
s)

Service time 7us
Service time 5us

6.0 8.0 10.0 12.0 14.0 16.0
Fifo size (events)

10
-8

10
-7

10
-6

10
-5

10
-4

10
-3

10
-2

10
-1

D
A

Q
 e

ff
ic

ie
n
cy

 lo
ss

Service time 7us
Service time 5us

2.http://cmsdoc.cern.ch/ftp/distribution/Meetings/TriDAS.workshops/
99.06.15/Proceedings.html

Switch Data Link

Detector data link

FED

RUI

RUM

RUO

RUS

RC

RUI bus

RUO bus

RU

DDU/
FED/
DCC

the region of the processor times to signal a problem to the
TTS.

So regarding the Readout Unit, assuming no failure in the
data transfer, there is no intrinsic weakness requiring a special
care.

IV. ROUTING NETWORK RESOURCES

As far as the architecture is defined, the routing network
will be assembled from commercial units provided by the tele-
com industry. Although the final product is far from being cho-
sen, they all include (with no exception) built-in monitoring
capabilities and hence the TTS can be notified in the event of
congestions.

V. FILTER FARM RESOURCES

For what is concerning the filter farm, a distinction
between the global load of the farm and the individual load of
a single Filter Unit (FU) must be made.

A. Filter Unit load
The Filter Unit is made out of a Builder Unit (BU) and a

commercial-off-the-shelf computer or cluster of computers
(called “workers” in the following) running dedicated code.
The BU receives the data to process from the routing network
under the control of the Builder Manager (BM). The task of
the BM is to assign a given event (or a set of events) to an indi-
vidual BU. When an event is fully re-assembled, one of the
“workers” starts the data processing. When the process is com-
plete, the worker starts another event and so on. As the events
are processed, the event queue of the BU is emptied. The BU
can then requests another set of events. In principle, the load
on the BUs and the workers should be balanced but given the
event size distribution, some devices can be more loaded than
others. Monitoring processes will run concurrently to ensure
the proper operation of the FU. Should an overload occur
(storage or processing overload), the FU can signal the prob-
lem to the “Farm Manager” or the BM who, in turn, will take
corrective actions (to be defined later).

To know the load of the farm, status of each individual FUs
can be collected but this will result in an important traffic on
the Computing Service Network (CSN). A global load mea-
surement can be performed at the BM level.

B. Filter Farm load
As described in the above paragraph, the BM grants a par-

ticular event of the RU to a particular FU. As the RU can han-
dle 100000 events, the BM has a pool of 100000 “names” with
which it will name the outcoming event from the RU. When a
name is in-use, it cannot be assigned to another event: it is
busy until the event analysis completion. At the end of the
event processing, the concerned FU returns a status message
with the “name” of the processed event. This name can again
be re-used for another event of the RUs. With this mechanism,
the BM can easily measure the global load of the farm by
counting the number of names in-use.

VI. CONCLUSION

The role of the CMS Trigger Throttling System has been
described in global terms. The situation regarding the different
stages of the data acquisition chain is quite different. Intrinsi-
cally, the most problematic parts are the front-end systems
where full custom solutions must be developed. For the rest of
the chain, standard and well known solutions can be used.
After this first analysis, it has been shown that the TTS can be
split logically and physically into two parts:

• a first one featuring quick reaction time, custom hardware,
located in the global trigger logic

• a second one with slower reaction time, running on the
BM processors

Finally, depending on the overflow recovery procedure, the
DAQ availability time can be reduced by an inacceptable fac-
tor.

VII. REFERENCES

[1] Front End Logical Model in CMS DAQ
S. CITTOLIN, J.F GILLOT, A. RACZ
CMS Technical note CMS-TN 96/015
available on http://cmsdoc.cern.ch

[2] Timing Trigger and Control reference WEB site
http://www.cern.ch/TTC/intro.html

VIII. APPENDIX

Buffer
size

(events)

Service
time
(us)

Overflow
probability

Emulation Warning
signal

Trigger
rules

Pixel
Detector

NA NA ? not possible (all the
front-ens are inde-

pendent

status bit in the data
stream (3 levels of

warning)

orbit gap extended from
127BX to 128BX and empty

orbit every second

Trackers 6 7 0.8%a

(APV6)

a.extracted from fig.1

APV logic itself or
FPGA (see CMS

note 1999/028

no at least 3 BX between consec-
utive triggers, other rules

seems inefficient

Preshower 8 7.2
(5.4)

0.2%
(4.10-5)

easy state machine yes no more than N+7 triggers
during N x service time

ECAL 16 7 1.10-5 easy emulation if
needed

no (considered to be
too slow)

none

HCAL ? ? estimated to
zerob

b.If the trigger rule is applied

not needed not needed no more than 22 triggers per
orbit

Muon DT ? ? very low not possible (occu-
pancy dependent)

? none

Muon
RPC

? ? very low not possible (occu-
pancy dependent

? none

Muon
CSC

~85 0.3/3/26 0.3event/
24hours

? ? ?

