
CANBUS AND MICROCONTROLLER USE IN THE

BABAR DETECTOR AT SLAC

H. B. Crawley, P.-A. Fischer, R. L. McKay, and W. T. Meyer, Department of Physics and
Astronomy, Iowa State University, Ames, Iowa, 50011, and P. L. Anthony, Stanford Linear

Accelerator Center, Stanford, California 94309

Abstract
The BaBar collaboration has chosen the Controller

Area Network (CAN) [1] bus for its controls and
monitoring field bus. In addition, the Motorola
MC68HC705X32 [2] microcontroller, which has a CAN
interface, was chosen for the standard intelligent device
for monitoring boards. This paper describes the CAN
system used by BaBar and the embedded software that
supports it, using the General Monitoring Board (GMB)
as a specific example. The GMB is a CAN module that
digitizes 32 differential analog signals and has eight bits
of bi-directional I/O.

1. INTRODUCTION

The BaBar detector at the Stanford Linear
Accelerator Center's PEP-II collider is designed to study
CP violation by accumulating a large number of pairs of
neutral mesons containing a b quark. The key to
obtaining a large number of these events is efficient
operation for a long time, and a critical element in this
"factory mode" of operation is reliable monitoring of the
entire detector. Early detection of out-of-range
conditions can prevent costly down time due to hardware
failures.

The heart of the monitoring system is the
Experimental Physics and Industrial Control System
(EPICS) [3]. This suite of tools uses a VME single board
computer both to interface to the monitoring hardware
and to serve the data to client processes running on a
TCP/IP network. Clients can be such processes as
operator displays, data archivers, and alarm handlers.

The BaBar field bus between the sensors and the
control system is CAN. This bus follows an open
standard that was developed for use in the automobile
industry and enjoys widespread use, making parts easily
available and inexpensive. Reliability was a primary
consideration in its design. EPICS-supported VME
hardware exists in the form of an industry pack (IP)
carrier board from Greenspring Corporation [4] and a
CAN driver IP module from TEWS [5].

Many microcontrollers with a built-in CAN interface
exist and it is also possible to use an external CAN

This work was supported in part by the U.S.
Department of Energy, Division of High Energy Physics,
under contracts No. DE-FG02-94ER40817 and DE-
AC03-76SF00515.

interface with most other microcontrollers. The BaBar
collaboration chose to standardize on the Motorola
MC68HC705X32 microcontroller, which has an
embedded CAN interface.

 In terms of the OSI reference model for
communications, CAN defines the lowest two layers, the
physical and datalink layers. EPICS provides the higher
layers, although the middle layers are very thin; EPICS
appears to CANbus mostly as an application layer.
Figure 1 illustrates this structure.

Figure 1: The OSI Reference Model for CAN

BaBar monitors over 50,000 quantities, distributed
among six detector subsystems and a general
infrastructure system. Monitored quantities include
temperatures, radiation levels, power supply parameters,
humidities, gas systems, and front-end electronics.

2. BABAR CANBUS STANDARDS

2.1 CANbus description
CANbus has international recognition as standards

ISO 11898:1993 and ISO 11519-1:1994. It is a daisy-
chained bus in which two wires carry the signal
information. Other wires in the bus carry a ground
reference, an optional +5V line for driving interface
circuitry, and a current return for the +5 V line. While
other physical implementations are possible, BaBar uses
cables of twisted pairs of copper wire.

The two signal lines are labeled CAN_H and CAN_L.
In the quiescent mode, both lines are at the midpoint of
their range, about 2.5 V. During data transmission these
signals go above or below their dormant state by at least
700 mV. When active, the bus is in either a dominant
state or a recessive state. The dominant state has CAN_H
high and CAN_L low. If multiple modules on the same

A PP LIC A T IO N

P R E SE N T A T IO N

S ES S IO N

T R A N S PO R T

N E T W O R K

D A T A LIN K

P H YSIC A L

C A N P R O T O C O L

W IR E A N D D R IVE R S

E PIC S

Figure 2: The Input Network

bus are trying simultaneously to assert dominant and
recessive states, the bus will be in the dominant state.The
dominant state represents the value "0" and the recessive
state the value "1". Because CAN_H and CAN_L
independently carry the information, the bus can function
if one of the signal lines is broken, albeit with lower
noise rejection.

In general, CAN modules do not need identifiers.
Instead, each message carries a message identifier, which
also sets the priority, and modules look for messages that
they have been told to accept. Thus multiple modules
may read a message from the bus and the sending
module does not know or care how many modules are
reading it. A lower message ID takes priority over a
higher one. The CAN standard supports both 11-bit and
29-bit message IDs; BaBar has chosen to use 11 bits.

If a module wishes to use the bus, it begins by
sending the message ID while simultaneously monitoring
the bus. If at any point, it asserts a recessive state and
sees the bus in a dominant state it knows that another
module is trying to send a higher priority message and it
aborts the transmission. Because the bus is always in the
correct state for the highest priority message there is no
inefficiency in bus arbitration. At the end of the
message, modules that have pending transmissions try
again.

Error detection using a 15-bit cyclic redundancy
check is built into the CAN hardware, as is a standard
error response protocol.

In general, CANbus modules are all equal; there is no
intrinsic master/slave relationship.

2.2 BaBar CANbus Usage
BaBar has chosen to restrict the generality of the

CAN standard in two ways. First, because we use EPICS
and the VME CANbus interface to collect the data, we
have what is essentially a master/slave structure. Second,
we assign station numbers to each module on the bus and
embed it into the message ID. Each module is then told
to accept only messages with its own number in the
appropriate bits of the identifier.

The BaBar standard CAN message identifier has the
following structure:

Bit 10: A priority bit. It exists to allow users to force
messages to a higher priority, if needed. In practice, this
has been rarely done.

Bit 9: A direction bit. If this bit is zero, the message
is from EPICS to the module specified in the module
field. If it is one, it is a reply from the module to EPICS.

Bits 8-4 (5 bits): The module field. In general, up to
32 modules can exist on one bus, but for compatibility
with a commercial standard used elsewhere in BaBar, we
usually drop five of the possible values, leaving a
maximum of 27 modules on the bus.

Bits 3-0 (4 bits): The command field. Together with
the priority bit this field allows each module to accept up
to 32 commands. Eight of the commands are BaBar-wide
standards and the remaining 24 are available to users. By
restricting eight commands for standard use we were able
to develop tools that work on all boards following the
BaBar standard. These tools are described in section 4.

2.3 Microcontroller Description
Each standard module has a Motorola

MC68HC705X32 microcontroller (MCU) on it. This
MCU has a CAN interface, four eight-bit bi-directional
data ports, an internal watchdog circuit, and has EPROM,
EEPROM, and RAM memory. The EEPROM memory
is particularly useful for storing nonvolatile data such as
station numbers and CAN register settings.

2.4 Interface Circuit
A standard circuit permits all BaBar modules to have

a common interface between CAN and the MCU. A key
feature of the circuit is the use of optical isolation to
decouple the ground on the CANbus from the ground on
the module. This prevents ground loops, which can
interfere with monitoring and control.

Figure 2 shows a schematic diagram of this interface
circuit. The PCA82C250 is a CAN interface chip and the
HCPL710 is an optical isolator.

DB9 PCA82C250

HCPL0710

HCPL0710

MC68HC705
X32

1

1

1

1

2

3

2

2

2

3

3

3

4

4

4

4

5

5

5

5

5

6

6

6

6

6

7

7

7

7

8

88

8

9

45

46

26

C A N _V +
R ese rved

C A N _H
C A N _G N D

C A N _S H L D
R ese rved

R ese rved

G N D
C A N _L

V C C
C A N H

C A N L
G N D

R X D
T X D

V R E F
R S

V D D 1

V D D 1

V D D 2

V D D 2

V I

V I

V O

V O

G N D 1

G N D 1

G N D 2

G N D 2

R X 0

T X 0

R X 1

T X 1
C A N E

V C C

V C C

V C C

10 nF

10 nF

10 nF

10 nF

10nF

10 nF
50 0V1M

3. MONITORING BOARDS

3.1 General Description
A variety of monitoring boards has been developed to

meet the needs of BaBar. Each of the six detector
subsystems has developed at least one to meet its special
needs and several boards exist which are used by more
than one subsystem.

As the most widely used example of a BaBar
monitoring board, we present a description of the
General Monitoring Board (GMB). BaBar uses more
than one hundred of these, and they are used by all six
subsystems.

3.2 General Monitoring Board - Purpose
The GMB is used to monitor voltages, currents, and

temperatures. A block diagram is shown in figure 3.

Up to 32 differential analog signals can be read by the
GMB and digitized by a 12-bit ADC which covers the
range of 0 V to +4 V in 1 mV steps. A passive network
conditions the input signals and feeds them to an analog
multiplexer (AMUX). The ADC is read by the MCU in a
continuous background scan. When the MCU receives a
CAN message requesting data, it sends the stored values
from the most recent scan.

In addition, the eight signals from MCU I/O port C
are brought to a 10-pin connector for such uses as driving
relays, setting alarms, and reading valve positions. Care
must be taken when using these signals because there is
no buffering to protect the MCU and to prevent ground
loops from the external connection.

An on-board DC-to-DC converter provides +9 V and
-9 V bias voltages for the analog multiplexer and for
biasing solid state temperature probes as described
below.

Figure 3: GMB Block Diagram

3.3 General Monitoring Board - Description
The module measures 120 mm by 100 mm. The

CAN signals arrive on a DB-9M connector which is
daisy-chained to a DB-9F connector for the CAN output.
The 32 analog signals arrive on a 2x32 DIN connector.

The port C signals are connected to a 10-pin low profile
Amp connector.

 A two-pin connector provides the power. Originally,
the board used +5 V power but a later modification
added a regulator to allow us to distribute +12 V power
and reduce it to +5 V on the board. This eliminated
problems associated with voltage drops over long power
cables.

Front mounted LEDs display a steady green signal
when power is on and an amber flash when a CANbus
message is sent or received. Figure 4 shows a photograph
of the GMB.

Figure 4: GMB Photograph

A passive input circuit on each channel conditions the
input signal. This circuit can convert a current source
into a voltage, it can scale an input voltage via a voltage
divider, and it can provide a bias voltage for solid state
temperature sensors and convert their returned current to
a voltage. These are shown in figure 5. The first diagram
in the figure shows the general circuit, which consists of
two resistors, two jumpers and one optional filter
capacitor to reduce high frequency noise.

The second circuit shows the configuration for use
with AD592 temperature sensors from Analog Devices
[6]. J1 is set to provide a nominal +9 V bias to the
sensor, which produces 1 µA of current per degree
Kelvin. This current flows across a 10 K resistor to
convert it into a voltage with 10 mV per degree Kelvin.

The third circuit uses RS and RL to form a voltage
divider to scale the input appropriately. Note that
Sense_lo is not necessarily connected to the board's
ground via J2.

3.4 General Monitoring Board - Serial Port
Version

A modified version of the GMB brings out the serial
port from the MCU to permit communication with RS-
232 and RS-485 devices. The input signals have active
filtering which permits a zero-offset adjustment on each

ADCMCU
CAN

Interface

In pu t
N e tw o rk
In pu t

N e tw o rk
In pu t

N e tw o rk
Input

Netw ork

In pu t
N e tw o rk
In pu t

N e tw o rk
In pu t

N e tw o rk
Input

Netw ork

In pu t
N e tw o rk
In pu t

N e tw o rk
In pu t

N e tw o rk
Input

Netw ork

In pu t
N e tw o rk
In pu t

N e tw o rk
In pu t

N e tw o rk
Input

Netw ork

A M U XA M U XA M U XAMUX

In pu t
N e tw o rk
In pu t

N e tw o rk
In pu t

N e tw o rk
Input

Network

In pu t
N e tw o rk
In pu t

N e tw o rk
In pu t

N e tw o rk
Input

Network

In pu t
N e tw o rk
In pu t

N e tw o rk
In pu t

N e tw o rk
Input

Network

In pu t
N e tw o rk
In pu t

N e tw o rk
In pu t

N e tw o rk
Input

Network
I/O

PORT

Figure 5: Input Networks

channel. This modified version is made on a 6u VME
board.

3.5 General Monitoring Board, Version 2
 A revised version of the GMB, called the GMB-2, is
being designed. In addition to the capabilities already
described, this board will contain a serial interface,
allowing it to be read from standard serial ports. In
addition, more display indicators are provided and more
protection has been included to increase reliability. This
version will be marketed by BiRa Systems of
Albuquerque, NM [7].

4. SOFTWARE

4.1 Core Microcontroller Software
The MCU software is designed to have a set of core

routines common to all BaBar boards. These routines call
standard user routines for user-specific code. In the
standard software distribution, the user routines are
simple stubs.

Core routines are used for such tasks as reading the
CAN interface and MCU registers, accessing RAM and
EEPROM, and reporting the board status,

4.2 User Microcontroller Software
User-supplied software responds to CANbus

commands not included in the set of eight reserved core

commands. This software performs user-specified tasks
in the background mode, and responds to all interrupts
not handled by the core CAN interrupt service routine.
This is where users install the unique functionality of
their boards.

4.3 VxWorks Software
Utility software exists on the EPICS VME single

board computer, which runs the VxWorks operating
system from Wind River Systems [8]. Routines exist to
scan an entire CAN bus for boards responding to the
BaBar standards and to list their serial number and
operating parameters. Other routines allow users to
change a board's station number and to enable and
disable the watchdog circuit on individual boards or all
boards on a bus.

4.4 EPICS Applications
Several general tools exist at the EPICS level. These

are client applications that provide graphical displays.
The most important of them is called canProbe. It allows
users to compose and receive arbitrary CAN messages,
and it works on any CAN module, not just those
following the BaBar standard. Other tools are board
specific. Most notable is an application to retrieve and
display all 32 channels from a GMB.

5. PERFORMANCE

After an extensive commissioning period using cosmic
rays, the BaBar detector is now collecting data. CANbus
modules are working in all subsystems and operate
reliably. The use of common tools and common
hardware has greatly reduced the work in building the
monitoring and control system, and allows for a greater
pool of expertise in running the detector.

6. ACKNOWLEDGEMENTS

Many people assisted in this effort. We particularly
wish to thank Steve Lewis and Carl Lionberger for help
with EPICS. Bill Thomas, Dave Nelson, Gunther Haller,
and Angel Angelov provided engineering support.
Technical assistance was received from Lee Harker and
Mark Freytag. We also thank the many BaBar CANbus
users who contributed useful comments and suggestions.

7. REFERENCES

[1] CAN was invented by Robert Bosch GmbH, Postfach
50, D-7000, Stuttgart, Germany. Additional information
can be obtained from CAN in Automation (CiA) at Am
Weichselgarten 26, D-91058 Erlangen, Germany.

[2] The MC68HC705X32 is manufactured by Motorola
Corporation. Literature is available at Motorola
Literature Distribution, P.O. Box 20912, Phoenix, AZ
85036 or at hppt://motserv.indirect.com.

[3] EPICS was originally developed at Los Alamos
National Laboratory and Argonne National Laboratory.

M U X_hi

M U X_lo

Sense_hi

Sense_lo

Vp lus
Filter
Cap

Gnd
Jumper

M U X_hi

M U X_lo

Sense_hi

Sense_lo

Vp lus
Filter
Cap

M U X_hi

M U X_lo

Sense_hi

Sense_lo

Vp lus

Filter
Cap

General

Tem perature

Voltage

Gnd
Jumper

RS

R L

R L

RS

10 K

J1

J2

J1

J1

J2

Much support and development continues to come from
its user community. More information can be found at
the following web sites:

(i) http://mesa53.lanl.gov/lansce8/Epics/epics.htm.

(ii) http://epics.aps.anl.gov/asd/controls/epics/EpicsDoc-

umentation/WWWPages.

[4] Greenspring Computers, 181 Constitution Drive,
Menlo Park, CA, 94025, or at the web site
http://www.greenspring.com.

[5] TEWS Datentechnik GmbH, Am Bahnhof 7, D-
25469 Halstenbek, Germany.

[6] Analog Devices, One Technology Way, P.O. Box
9106, Norwood, MA 02062-9106 and at the web site
http://www.analog.com.

[7] BiRa Systems, 2404 Comanche N.E., Albuquerque,
NM 87107, and at info@bira.com.

[8] Wind River Systems, Inc., 1010 Atlantic Ave.,
Alameda, CA 94501-1153.

